
Online
Multiplayer
Video game
Framework

By Jeff Parla and Ben O’Neill

OUTLINE

Our motivation and problem
Introduction

Our Solution
How we solved our problem

01

02

Results
Did it work how we expected?

Conclusions
Lessons we learned and what
comes next

03

04

INTRODUCTION

Create an open-source framework for online
multiplayer games

● Fast and simple
● Promotes good practices
● Abstracts networking concepts for the

developer
● Available for anyone to edit and use

Our Goal

The problem

● Online multiplayer games are not easy to develop
without the right networking knowledge

● Some naive approaches may result in a slow game
● How can we present an easy to use networking

solution for video games?

● Using the Client/Server model
● The game client sends inputs to the server
● The server processes these inputs and runs the game logic
● The server sends information about the game state to the

client, which draws the representation of that information
● We can create a framework that handles the networking

aspect of this model, leaving the developer to write game
logic

Solution

Why?

● The developer should spend the most time writing the
game, without worrying how to write a networking
solution

● We want to offer a solution that works well and is
beginner-friendly

● We chose PyGame as it is a simple game engine that
uses Python. Python has low level socket programming,
so we hope our framework’s code will help beginners
understand how socket programming works

Summary of Results

● We’ve created an example game, Air Hockey, using our
framework to show how traditional game code (update
functions, drawing functions) can be translated to an
online multiplayer game

● It works!

Our Solution

Client/Server Model

● The client only sends inputs and receives updated positions
and variables (like score)

● It will then display these updated positions, such as a draw
function in a traditional game

● The server will take all inputs and “play” the game as if it
were a local multiplayer game

● The server then sends the updated state back to the clients
● This prevents situations where one client may have a fast

connection and another client has a slow connection and the
slow connection slows down the game for everyone

Basic Network Layout

Client 2Client 1 Server

{"id": 2, "game_objects": [{"type": "GameManager",
"score": [2, 1]},...]}

{"id": 1, "keys": [], "mouse_pos": [406, 168]} {"id": 2, "keys": [115], "mouse_pos": [639, 138]}

{"id": 1, "game_objects": [{"type": "GameManager",
"score": [2, 1]}, ...]}

Initial Connection

Client-side:
● Send the client connect

message to the server
● Create GameObjects from

data in the server response
packet

Server-side:
● Store client ID, IP address,

and port
● Create necessary

GameObjects for the new
user

● Send all game state
information to the client

Client and Server Classes

GameClient
● Draws to screen
● Gets keyboard and mouse

input
● Gets game state data from

the server

GameServer
● Runs all game logic code
● Processes packets from

clients
● Handles new connections

Client and Server Classes

GameObject

● The base class for all objects the game logic uses
● In our Air Hockey demo, the Player and Puck classes are

DrawableObjects. This is a subclass of GameObject
with a sprite and (x,y) coordinates.

● Built-in methods for converting to and from dictionaries,
as well as updating on the client and server side.

● Write GameObject subclasses for objects in the game:
○ Players
○ Items
○ Enemies

● Implement server_update() and client_update() in GameObjects
○ server_update() refers to game logic, like checking collision

between a bullet and a player, then decreasing health
○ client_update() sends the game state from the server, so it would

show the user that their health decreased
● Implement add_client() method in GameServer subclass
● Implement draw() and serialize_game_objects() methods in GameClient

subclass

Writing a game

Other notable features

● Command line arguments to change host and IP on
client and server side

● Debug mode which prints extra data for developers

Results

We’ve created a small game to demonstrate our
framework.
It features client and server side updating of objects,
along with objects that are not drawn but keep track
of score.
Unlimited amounts of players are supported as a
way of stress testing the network code

Air Hockey Demo

Stress test

● Realistically, this engine is meant for 2-4 player
multiplayer games, but it supports unlimited amounts of
players without much slowdown

Notes

● While we tested with multiple players on one machine,
and two players from different machines, we have not
had the chance to test across networks, so we cannot
definitively say how low the latency is

● As long as the server is not too far from each client, and
every connected client has a good network connection,
in theory, latency is low.

Conclusions

Conclusions

● We have succeeded in our attempt to make a
simple networking package

● It gives developers a good starting point for
creating a multiplayer game

● The client_update() and server_update() functions
provide a good abstraction for the client/server
model

Lessons Learned

● How to design an efficient system for UDP packet
transfer

● More advanced Python and Pygame programming
● Designing an abstract framework for game

development

What’s Next?

● Implementing client-side prediction to give the user
smoother visual feedback

● Optimizing packet size for better speed with many
objects

● Separation of client only objects from server objects

Questions?

